Time Left - 10:00 mins

English Quiz on Reading Comprehension for IBPS Clerk, India Post, SBI SO, RRB & NABARD Exam

Attempt now to get your rank among 1433 students!

Question 1

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
The passage is most probably directed at which kind of audience?

Question 2

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
It can be inferred from the passage that the morphogenetic determinants present in the early embryo are:

Question 3

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
The main topic of the passage is:

Question 4

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
According to the passage, when biologists believed that the cells in the early embryo were undetermined, they made which of the following mistake(s)?

Question 5

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
It can be inferred from the passage that the initial production of histones after an egg is fertilized takes place:

Question 6

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
It can be inferred from the passage that which of the following is dependent on the fertilization of an egg?

Question 7

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
Which among the following is MOST OPPOSITE in meaning to the word “invertebrate”?

Question 8

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
Which among the following is MOST SIMILAR in meaning to the word “arose”?

Question 9

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
Which among the following is MOST OPPOSITE in meaning to the word “presumably”?

Question 10

Direction: Read the given passage and answer the questions that follow.

Nearly a century ago, biologists found that if they separated an invertebrate animal embryo into two parts at an early stage of its life, it would survive and develop as two normal embryos. This led them to believe that the cells in the early embryo are undetermined in the sense that each cell has the potential to develop in a variety of different ways. Later biologists found that the situation was not so simple. It matters in which plane the embryo is cut. If it is cut in a plane different from the one used by the early investigators, it will not form two whole embryos.

A debate arose over what exactly was happening. Which embryo cells are determined, just when do they become irreversibly committed to their fates, and what are the “morphogenetic determinants” that tell a cell what to become? But the debate could not be resolved because no one was able to ask the crucial questions in a form in which they could be pursued productively. Recent discoveries in molecular biology, however, have opened up prospects for a resolution of the debate. Now investigators think they know at least some of the molecules that act as morphogenetic determinants in early development. They have been able to show that, in a sense, cell determination begins even before an egg is fertilized.

Studying sea urchins, biologist Paul Gross found that an unfertilized egg contains substances that function as morphogenetic determinants. They are located in the cytoplasm of the egg cell; i.e., in that part of the cell’s protoplasm that lies outside of the nucleus. In the unfertilized egg, the substances are inactive and are not distributed homogeneously. When the egg is fertilized, the substances become active and, presumably, govern the behavior of the genes they interact with. Since the substances are unevenly distributed in the egg, when the fertilized egg divides, the resulting cells are different from the start and so can be qualitatively different in their own gene activity.

The substances that Gross studied are maternal messenger RNA’s—products of certain of the maternal genes. He and other biologists studying a wide variety of organisms have found that these particular RNAs direct, in large part, the synthesis of histones, a class of proteins that bind to DNA. Once synthesized, the histones move into the cell nucleus, where a section of DNA wraps around them to form a structure that resembles beads, or knots, on a string. The beads are DNA segments wrapped around the histones; the string is the intervening DNA. And it is the structure of these beaded DNA strings that guide the fate of the cells in which they are located.

Source: https://books.google.co.in
Which among the following is MOST SIMILAR in meaning to the word “resemble”?
  • 1433 attempts
  • 38 upvotes
  • 34 comments
Mar 11PO, Clerk, SO, Insurance