Time Left - 05:00 mins

Quiz on Reading Comprehension

Attempt now to get your rank among 2455 students!

Question 1

Direction: Read the following passage carefully and answer the questions that follow.

Two giant radio galaxies have been discovered with South Africa’s powerful MeerKAT telescope located in the Karoo region, a semi-arid area in the southwest of the country. Radio galaxies get their name from the fact that they release huge beams, or ‘jets’, of radio light. These happen through the interaction between charged particles and strong magnetic fields related to supermassive black holes at the galaxies’ hearts.

These giant galaxies are much bigger than most of the others in the universe and are thought to be quite rare. Although millions of radio galaxies are known to exist, only around 800 giants have been found. This population of galaxies was previously hidden from us by radio telescopes’ limitations. But the MeerKAT has allowed new discoveries because it can detect faint, diffused light which previous telescopes were unable to do.

The discovery, published in the Monthly Notices of the Royal Astronomical Society, gives astronomers further clues about how galaxies have changed and evolved throughout cosmic history. It’s also a way to understand how galaxies may continue to change and evolve — and even to work out how old radio galaxies can get.

The galaxies in question are several billion light-years away. The discovery of enormous jets and lobes in the MeerKAT map allowed us to confidently identify the objects as giant radio galaxies.

Their discovery means that a clearer understanding of the evolutionary pathways of galaxies is beginning to emerge. This is tantalizing evidence that a large population of faint, very extended giant radio galaxies may exist. This may help us understand how radio galaxies become so huge and what sort of havoc supermassive black holes can wreak on their galaxies.

These aren’t the first radio galaxies astronomers have _________________. Many hundreds of thousands have already been identified. But only around 800 have radio jets bigger than 700 kilo-parsecs in size, or around 22 times the size of the Milky Way. These truly enormous systems are called ‘giant radio galaxies’.

We suspect that many more galaxies like these should exist, because of the way we think galaxies should grow and change over their lifetimes. And that’s one question we hope this discovery can help to answer: how old are giant radio galaxies and how did they get so enormous?

Now, telescope technology is making it possible to put these and other theories to the test. MeerKAT is the best of its kind in the world because of the telescope’s unprecedented sensitivity to faint and diffuse radio light.

Source: https://www.downtoearth.org.in/
Which of the following statement(s) is/are true as per the passage?
I. The recently discovered radio galaxies are bigger than other galaxies in our universe.
II. Scientists have only found two radio galaxies till date.
III. Radio galaxies release huge beams of radio light.

Question 2

Direction: Read the following passage carefully and answer the questions that follow.
Two giant radio galaxies have been discovered with South Africa’s powerful MeerKAT telescope located in the Karoo region, a semi-arid area in the southwest of the country. Radio galaxies get their name from the fact that they release huge beams, or ‘jets’, of radio light. These happen through the interaction between charged particles and strong magnetic fields related to supermassive black holes at the galaxies’ hearts.
These giant galaxies are much bigger than most of the others in the universe and are thought to be quite rare. Although millions of radio galaxies are known to exist, only around 800 giants have been found. This population of galaxies was previously hidden from us by radio telescopes’ limitations. But the MeerKAT has allowed new discoveries because it can detect faint, diffused light which previous telescopes were unable to do.
The discovery, published in the Monthly Notices of the Royal Astronomical Society, gives astronomers further clues about how galaxies have changed and evolved throughout cosmic history. It’s also a way to understand how galaxies may continue to change and evolve — and even to work out how old radio galaxies can get.
The galaxies in question are several billion light-years away. The discovery of enormous jets and lobes in the MeerKAT map allowed us to confidently identify the objects as giant radio galaxies.
Their discovery means that a clearer understanding of the evolutionary pathways of galaxies is beginning to emerge. This is tantalizing evidence that a large population of faint, very extended giant radio galaxies may exist. This may help us understand how radio galaxies become so huge and what sort of havoc supermassive black holes can wreak on their galaxies.
These aren’t the first radio galaxies astronomers have _________________. Many hundreds of thousands have already been identified. But only around 800 have radio jets bigger than 700 kilo-parsecs in size, or around 22 times the size of the Milky Way. These truly enormous systems are called ‘giant radio galaxies’.
We suspect that many more galaxies like these should exist, because of the way we think galaxies should grow and change over their lifetimes. And that’s one question we hope this discovery can help to answer: how old are giant radio galaxies and how did they get so enormous?
Now, telescope technology is making it possible to put these and other theories to the test. MeerKAT is the best of its kind in the world because of the telescope’s unprecedented sensitivity to faint and diffuse radio light.
Source: https://www.downtoearth.org.in/
Which of the following is the MOST SIMILAR to the meaning of the word ‘wreak’ as used in the passage?

Question 3

Direction: Read the following passage carefully and answer the questions that follow.
Two giant radio galaxies have been discovered with South Africa’s powerful MeerKAT telescope located in the Karoo region, a semi-arid area in the southwest of the country. Radio galaxies get their name from the fact that they release huge beams, or ‘jets’, of radio light. These happen through the interaction between charged particles and strong magnetic fields related to supermassive black holes at the galaxies’ hearts.
These giant galaxies are much bigger than most of the others in the universe and are thought to be quite rare. Although millions of radio galaxies are known to exist, only around 800 giants have been found. This population of galaxies was previously hidden from us by radio telescopes’ limitations. But the MeerKAT has allowed new discoveries because it can detect faint, diffused light which previous telescopes were unable to do.
The discovery, published in the Monthly Notices of the Royal Astronomical Society, gives astronomers further clues about how galaxies have changed and evolved throughout cosmic history. It’s also a way to understand how galaxies may continue to change and evolve — and even to work out how old radio galaxies can get.
The galaxies in question are several billion light-years away. The discovery of enormous jets and lobes in the MeerKAT map allowed us to confidently identify the objects as giant radio galaxies.
Their discovery means that a clearer understanding of the evolutionary pathways of galaxies is beginning to emerge. This is tantalizing evidence that a large population of faint, very extended giant radio galaxies may exist. This may help us understand how radio galaxies become so huge and what sort of havoc supermassive black holes can wreak on their galaxies.
These aren’t the first radio galaxies astronomers have _________________. Many hundreds of thousands have already been identified. But only around 800 have radio jets bigger than 700 kilo-parsecs in size, or around 22 times the size of the Milky Way. These truly enormous systems are called ‘giant radio galaxies’.
We suspect that many more galaxies like these should exist, because of the way we think galaxies should grow and change over their lifetimes. And that’s one question we hope this discovery can help to answer: how old are giant radio galaxies and how did they get so enormous?
Now, telescope technology is making it possible to put these and other theories to the test. MeerKAT is the best of its kind in the world because of the telescope’s unprecedented sensitivity to faint and diffuse radio light.
Source: https://www.downtoearth.org.in/
Which of the following statement(s) is/are false as per the passage?
I. The recently discovered galaxies are two million light years away.
II. The discovery of the two galaxies was published in the Monthly Notices of the Royal Astrological Society.
III. The interaction between charged particles and strong magnetic fields releases the radio light from radio galaxy.

Question 4

Direction: Read the following passage carefully and answer the questions that follow.
Two giant radio galaxies have been discovered with South Africa’s powerful MeerKAT telescope located in the Karoo region, a semi-arid area in the southwest of the country. Radio galaxies get their name from the fact that they release huge beams, or ‘jets’, of radio light. These happen through the interaction between charged particles and strong magnetic fields related to supermassive black holes at the galaxies’ hearts.
These giant galaxies are much bigger than most of the others in the universe and are thought to be quite rare. Although millions of radio galaxies are known to exist, only around 800 giants have been found. This population of galaxies was previously hidden from us by radio telescopes’ limitations. But the MeerKAT has allowed new discoveries because it can detect faint, diffused light which previous telescopes were unable to do.
The discovery, published in the Monthly Notices of the Royal Astronomical Society, gives astronomers further clues about how galaxies have changed and evolved throughout cosmic history. It’s also a way to understand how galaxies may continue to change and evolve — and even to work out how old radio galaxies can get.
The galaxies in question are several billion light-years away. The discovery of enormous jets and lobes in the MeerKAT map allowed us to confidently identify the objects as giant radio galaxies.
Their discovery means that a clearer understanding of the evolutionary pathways of galaxies is beginning to emerge. This is tantalizing evidence that a large population of faint, very extended giant radio galaxies may exist. This may help us understand how radio galaxies become so huge and what sort of havoc supermassive black holes can wreak on their galaxies.
These aren’t the first radio galaxies astronomers have _________________. Many hundreds of thousands have already been identified. But only around 800 have radio jets bigger than 700 kilo-parsecs in size, or around 22 times the size of the Milky Way. These truly enormous systems are called ‘giant radio galaxies’.
We suspect that many more galaxies like these should exist, because of the way we think galaxies should grow and change over their lifetimes. And that’s one question we hope this discovery can help to answer: how old are giant radio galaxies and how did they get so enormous?
Now, telescope technology is making it possible to put these and other theories to the test. MeerKAT is the best of its kind in the world because of the telescope’s unprecedented sensitivity to faint and diffuse radio light.
Source: https://www.downtoearth.org.in/
Which of the following is the OPPOSITE to the meaning of the word ‘diffuse’ as used in the passage?

Question 5

Direction: Read the following passage carefully and answer the questions that follow.
Two giant radio galaxies have been discovered with South Africa’s powerful MeerKAT telescope located in the Karoo region, a semi-arid area in the southwest of the country. Radio galaxies get their name from the fact that they release huge beams, or ‘jets’, of radio light. These happen through the interaction between charged particles and strong magnetic fields related to supermassive black holes at the galaxies’ hearts.
These giant galaxies are much bigger than most of the others in the universe and are thought to be quite rare. Although millions of radio galaxies are known to exist, only around 800 giants have been found. This population of galaxies was previously hidden from us by radio telescopes’ limitations. But the MeerKAT has allowed new discoveries because it can detect faint, diffused light which previous telescopes were unable to do.
The discovery, published in the Monthly Notices of the Royal Astronomical Society, gives astronomers further clues about how galaxies have changed and evolved throughout cosmic history. It’s also a way to understand how galaxies may continue to change and evolve — and even to work out how old radio galaxies can get.
The galaxies in question are several billion light-years away. The discovery of enormous jets and lobes in the MeerKAT map allowed us to confidently identify the objects as giant radio galaxies.
Their discovery means that a clearer understanding of the evolutionary pathways of galaxies is beginning to emerge. This is tantalizing evidence that a large population of faint, very extended giant radio galaxies may exist. This may help us understand how radio galaxies become so huge and what sort of havoc supermassive black holes can wreak on their galaxies.
These aren’t the first radio galaxies astronomers have _________________. Many hundreds of thousands have already been identified. But only around 800 have radio jets bigger than 700 kilo-parsecs in size, or around 22 times the size of the Milky Way. These truly enormous systems are called ‘giant radio galaxies’.
We suspect that many more galaxies like these should exist, because of the way we think galaxies should grow and change over their lifetimes. And that’s one question we hope this discovery can help to answer: how old are giant radio galaxies and how did they get so enormous?
Now, telescope technology is making it possible to put these and other theories to the test. MeerKAT is the best of its kind in the world because of the telescope’s unprecedented sensitivity to faint and diffuse radio light.
Source: https://www.downtoearth.org.in/
Which of the following word can fit in the blank in context to the passage?

These aren’t the first radio galaxies astronomers have _________________.

Question 6

Direction: Read the following passage carefully and answer the questions that follow.
Two giant radio galaxies have been discovered with South Africa’s powerful MeerKAT telescope located in the Karoo region, a semi-arid area in the southwest of the country. Radio galaxies get their name from the fact that they release huge beams, or ‘jets’, of radio light. These happen through the interaction between charged particles and strong magnetic fields related to supermassive black holes at the galaxies’ hearts.
These giant galaxies are much bigger than most of the others in the universe and are thought to be quite rare. Although millions of radio galaxies are known to exist, only around 800 giants have been found. This population of galaxies was previously hidden from us by radio telescopes’ limitations. But the MeerKAT has allowed new discoveries because it can detect faint, diffused light which previous telescopes were unable to do.
The discovery, published in the Monthly Notices of the Royal Astronomical Society, gives astronomers further clues about how galaxies have changed and evolved throughout cosmic history. It’s also a way to understand how galaxies may continue to change and evolve — and even to work out how old radio galaxies can get.
The galaxies in question are several billion light-years away. The discovery of enormous jets and lobes in the MeerKAT map allowed us to confidently identify the objects as giant radio galaxies.
Their discovery means that a clearer understanding of the evolutionary pathways of galaxies is beginning to emerge. This is tantalizing evidence that a large population of faint, very extended giant radio galaxies may exist. This may help us understand how radio galaxies become so huge and what sort of havoc supermassive black holes can wreak on their galaxies.
These aren’t the first radio galaxies astronomers have _________________. Many hundreds of thousands have already been identified. But only around 800 have radio jets bigger than 700 kilo-parsecs in size, or around 22 times the size of the Milky Way. These truly enormous systems are called ‘giant radio galaxies’.
We suspect that many more galaxies like these should exist, because of the way we think galaxies should grow and change over their lifetimes. And that’s one question we hope this discovery can help to answer: how old are giant radio galaxies and how did they get so enormous?
Now, telescope technology is making it possible to put these and other theories to the test. MeerKAT is the best of its kind in the world because of the telescope’s unprecedented sensitivity to faint and diffuse radio light.
Source: https://www.downtoearth.org.in/
How does the discovery of two new galaxies help us in understanding our universe?

Question 7

Direction: Read the following passage carefully and answer the questions that follow.
Two giant radio galaxies have been discovered with South Africa’s powerful MeerKAT telescope located in the Karoo region, a semi-arid area in the southwest of the country. Radio galaxies get their name from the fact that they release huge beams, or ‘jets’, of radio light. These happen through the interaction between charged particles and strong magnetic fields related to supermassive black holes at the galaxies’ hearts.
These giant galaxies are much bigger than most of the others in the universe and are thought to be quite rare. Although millions of radio galaxies are known to exist, only around 800 giants have been found. This population of galaxies was previously hidden from us by radio telescopes’ limitations. But the MeerKAT has allowed new discoveries because it can detect faint, diffused light which previous telescopes were unable to do.
The discovery, published in the Monthly Notices of the Royal Astronomical Society, gives astronomers further clues about how galaxies have changed and evolved throughout cosmic history. It’s also a way to understand how galaxies may continue to change and evolve — and even to work out how old radio galaxies can get.
The galaxies in question are several billion light-years away. The discovery of enormous jets and lobes in the MeerKAT map allowed us to confidently identify the objects as giant radio galaxies.
Their discovery means that a clearer understanding of the evolutionary pathways of galaxies is beginning to emerge. This is tantalizing evidence that a large population of faint, very extended giant radio galaxies may exist. This may help us understand how radio galaxies become so huge and what sort of havoc supermassive black holes can wreak on their galaxies.
These aren’t the first radio galaxies astronomers have _________________. Many hundreds of thousands have already been identified. But only around 800 have radio jets bigger than 700 kilo-parsecs in size, or around 22 times the size of the Milky Way. These truly enormous systems are called ‘giant radio galaxies’.
We suspect that many more galaxies like these should exist, because of the way we think galaxies should grow and change over their lifetimes. And that’s one question we hope this discovery can help to answer: how old are giant radio galaxies and how did they get so enormous?
Now, telescope technology is making it possible to put these and other theories to the test. MeerKAT is the best of its kind in the world because of the telescope’s unprecedented sensitivity to faint and diffuse radio light.
Source: https://www.downtoearth.org.in/
What could be the suitable title of the above passage?

Question 8

Direction: Read the following passage carefully and answer the questions that follow.
Two giant radio galaxies have been discovered with South Africa’s powerful MeerKAT telescope located in the Karoo region, a semi-arid area in the southwest of the country. Radio galaxies get their name from the fact that they release huge beams, or ‘jets’, of radio light. These happen through the interaction between charged particles and strong magnetic fields related to supermassive black holes at the galaxies’ hearts.
These giant galaxies are much bigger than most of the others in the universe and are thought to be quite rare. Although millions of radio galaxies are known to exist, only around 800 giants have been found. This population of galaxies was previously hidden from us by radio telescopes’ limitations. But the MeerKAT has allowed new discoveries because it can detect faint, diffused light which previous telescopes were unable to do.
The discovery, published in the Monthly Notices of the Royal Astronomical Society, gives astronomers further clues about how galaxies have changed and evolved throughout cosmic history. It’s also a way to understand how galaxies may continue to change and evolve — and even to work out how old radio galaxies can get.
The galaxies in question are several billion light-years away. The discovery of enormous jets and lobes in the MeerKAT map allowed us to confidently identify the objects as giant radio galaxies.
Their discovery means that a clearer understanding of the evolutionary pathways of galaxies is beginning to emerge. This is tantalizing evidence that a large population of faint, very extended giant radio galaxies may exist. This may help us understand how radio galaxies become so huge and what sort of havoc supermassive black holes can wreak on their galaxies.
These aren’t the first radio galaxies astronomers have _________________. Many hundreds of thousands have already been identified. But only around 800 have radio jets bigger than 700 kilo-parsecs in size, or around 22 times the size of the Milky Way. These truly enormous systems are called ‘giant radio galaxies’.
We suspect that many more galaxies like these should exist, because of the way we think galaxies should grow and change over their lifetimes. And that’s one question we hope this discovery can help to answer: how old are giant radio galaxies and how did they get so enormous?
Now, telescope technology is making it possible to put these and other theories to the test. MeerKAT is the best of its kind in the world because of the telescope’s unprecedented sensitivity to faint and diffuse radio light.
Source: https://www.downtoearth.org.in/
Why is the MeerKAT telescope considered to be one of the best telescopes in the world?
  • 2455 attempts
  • 33 upvotes
  • 63 comments
Jul 7PO, Clerk, SO, Insurance