Differential Equations - II & Laplace Transform Study Notes for Civil Engineering

By Sachin Singh|Updated : November 10th, 2018

Initial & Boundary Value Problems

  • With initial value problems, we had a differential equation and we specified the value of the solution and an appropriate number of derivatives at the same point (collectively called initial conditions). 
  • For instance, for a second order differential equation, the initial conditions are,

 http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0001M.gif

  •  With boundary value problems we will have a differential equation and we will specify the function and/or derivatives at different points, which we’ll call boundary values.  For second order differential equations, which will be looking at pretty much exclusively here, any of the following can, and will, be used for boundary conditions.

 

http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0002M.gif       
http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0003M.gif       - eq2
http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0004M.gif            eq3
http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0005M.gif         eq4
  • So, for the purposes of our discussion here we’ll be looking almost exclusively at differential equations in the form,

 http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0006M.gif            eq-5

  •  In the earlier chapters, we said that a differential equation was homogeneous if http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0007M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif for all x
  • Here we will say that a boundary value problem is homogeneous if in addition to http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0008M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif we also have http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0009M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif and http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0010M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif (regardless of the boundary conditions we use). 
  • If any of these are not zero we will call the BVP nonhomogeneous
  •  It is important to now remember that when we say homogeneous (or nonhomogeneous) we are saying something not only about the differential equation itself but also about the boundary conditions as well. 

Example: Solve the following BVP.

                                 http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0011M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif

Solution:

Okay, this is a simple differential equation so solve and so we’ll leave it to you to verify that the general solution to this is,

  http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0012M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif

 Now all that we need to do is apply the boundary conditions.

                                                             http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0013M.gifThe solution is then,

                                               http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0014M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif

Example 2 : Solve the following BVP.

                                 http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0015M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif

Solution:

We’re working with the same differential equation as the first example so we still have,

                                                http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0016M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gifUpon applying the boundary conditions we get,

                                                            http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0017M.gif

  • So in this case, unlike previous example, both boundary conditions tell us that we have to have http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0018M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif and neither one of them tell us anything about http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0019MP.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0019M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif
  • Remember however that all we’re asking for is a solution to the differential equation that satisfies the two given boundary conditions and the following function will do that,

                                               http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0020M.gif

  •  In other words, regardless of the value of http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0021MP.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/eq0021M.gifhttp://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem_files/empty.gif we get a solution and so, in this case we get infinitely many solutions to the boundary value problem.

 

 

Laplace Transform

  • The Laplace transform byjusexamprep, for all s such that this integral converges.

Examples: byjusexamprep byjusexamprep byjusexamprep, byjusexamprepbyjusexamprep byjusexamprep byjusexamprep.

  • Table of Laplace transform of function: 

byjusexamprep

  • Theorem (Linearity of the Laplace transform):
    • Suppose byjusexamprep and byjusexamprep are defined for byjusexamprep, and byjusexamprep and byjusexamprep are real numbers. 
    • Then byjusexamprep for byjusexamprep.
  • Inverse Laplace transform 
    • Given a function G, a function g such that byjusexamprep is called an inverse Laplace transform of G
    • In this event, we write byjusexamprep.
  •  Lerch Theorem
    • Let f and g be continuous on byjusexamprep and suppose that byjusexamprep.  Then byjusexamprep.
  • Theorem: If byjusexamprep and byjusexamprep and byjusexamprep and byjusexamprep are real numbers, then byjusexamprep.

Solutions of IVP using Laplace Transform

  • Let f be continuous on byjusexamprep and suppose byjusexamprep is piecewise continuous on byjusexamprep for every positive k
  • Suppose also that byjusexamprep if byjusexamprep.  Then byjusexamprep.
  • Theorem (Laplace transform of a higher derivative)
    • Suppose byjusexamprep are continuous on byjusexamprep and byjusexamprep is piecewise continuous on byjusexamprep for every positive k
    • Suppose also that byjusexamprep for byjusexamprepand for byjusexamprep.  Then byjusexamprep.

Examples: byjusexamprep byjusexamprep byjusexamprep.

byjusexamprep byjusexamprep byjusexamprep.

Convolution

  • If f and g are defined on byjusexamprep, then the convolution byjusexamprep of f with g is the function defined by byjusexamprep for byjusexamprep.
  • Convolution theorem): If byjusexamprep is defined, then byjusexamprep.
  • Theorem: Let byjusexamprep and byjusexamprep.  Then byjusexamprep.

Example: byjusexamprep byjusexamprep byjusexamprep.

Determine f such that byjusexamprep byjusexamprep byjusexamprep.

  • Theorem: If byjusexamprep is defined, so is byjusexamprep, and byjusexamprep.
  • Example:

Solve byjusexamprep byjusexamprep byjusexamprep.

Unit Impulses & DIRAC's Delta Function

  • Dirac’s delta function

byjusexamprep

where

byjusexamprep byjusexamprepbyjusexamprep

  • Filtering property
  • Let byjusexamprep and let f be integrable on byjusexamprep and continuous at a.  Then byjusexamprep
  •  Let thebyjusexamprepbyjusexamprepbyjusexamprepbyjusexamprep definition of the Laplace transformation of the delta function.

Laplace Transform Solution of Systems

  • Example: Solve the system

byjusexamprep  byjusexamprep

 

Differential Equations with Polynomial Coefficients

  • Let byjusexamprep for byjusexamprep and suppose that F is differentiable. Then byjusexamprep for byjusexamprep.
  • Corollary: Let byjusexamprep for byjusexamprep and let n be a positive integer.  Suppose F is n times differentiable.  Then byjusexamprep for byjusexamprep.

Example

byjusexamprep  byjusexamprep.

  • Let f be piecewise continuous on forbyjusexamprep every positive number k and suppose there are numbers M and b such that byjusexamprep for byjusexamprep. Let byjusexamprep.  Then byjusexamprep.

The Wave Equation

One dimensional Wave Equation
byjusexamprep

  • The variable t has the significance of time, the variable x is the spatial variable. Unknown function u(x,t) depends both of x and t.
  • For example, in case of vibrating string the function u(x,t) means the string deviation from equilibrium in the point x at the moment t.
  • Consider the wave equation for the vibrating string in more details.
  • Applying the 2d Newton’s law to the portion of the string between points x and byjusexamprep we get the equation

byjusexamprep 

and dividing by the byjusexamprep and taking the limit byjusexamprep we obtain the wave equation

byjusexamprep                                                                                                   
  • If both ends of the string are fixed then the boundary conditions are

byjusexamprep 

and the initial conditions are   

byjusexamprep.

 

  • In case of infinite string byjusexamprep the wave equation with initial conditions

byjusexamprep

has solution (D’Alembert’s solution):

byjusexamprep

 

 

Diffusion or Heat Equation

  • The equation for this distribution is

byjusexamprep.

  • Now we consider the temperature distribution,byjusexamprep which depends on the point x of the rod and time t.

byjusexamprep,

  • In case of diffusion equation r(x)=0.
  • Initial temperature distribution: byjusexamprep
  • If the function f(x) is so-called delta function (at the initial moment we have the heat source at one point with coordinate byjusexamprep) then the homogeneous (r(x)=0) heat equation

byjusexamprephas the solution. byjusexamprep

 

  • This is the so-called fundamental solution.

Example: The Braselton (chemical reaction system with two components) on the unit intervalbyjusexamprep

 

byjusexamprep

 

*****

Next Subject - Integral Calculus

For a detailed schedule of GATE Civil Engineering(CE) 2019 Champion Study Plan, Click here

GATE Civil Engineering(CE) 2019 Champion Study Plan

To help you with your preparation for GATE 2019 Exam, BYJU'S Exam Prep has launched 2019 GATE Online Test Series based on the latest pattern and level of GATE exam with in-built virtual calculator. 

Details about 2019 GATE Online Test Series

GATE 2019 Civil Engineering Syllabus, Download PDF!

Thanks

Team BYJU'S Exam Prep

Download BYJU'S Exam Prep, Best GATE exam app for Preparation" 

Comments

write a comment

Follow us for latest updates